160 research outputs found

    Automatic focus control for facsimile cameras

    Get PDF
    An electronic circuit for controlling the focus of facsimile cameras is described. The circuit consists of balanced a.c. amplifiers, two square law function generators, and a differential amplifier and power drive. The invention includes a method for maintaining the imaging sensor at the expected location of the focal plane as the facsimile camera scans a scene or terrain. A block diagram of the electronic circuitry is provided

    Transmitting and reflecting diffuser

    Get PDF
    An ultraviolet grade fused silica substrate is coated with vaporized fused silica. The coating thickness is controlled, one thickness causing ultraviolet light to diffuse and another thickness causing ultraviolet light to reflect a near Lambertian pattern

    Device for measuring the contour of a surface

    Get PDF
    Light from a source is imaged by a lens onto a surface so that the energy from the source is concentrated into a spot. As the spot across the surface is scanned, the surface moves relative to the point of perfect focus. When the surface moves away from perfect focus the spot increases in size, while the total energy in the spot remains virtually constant. The lens then reimages the light reflected by the surface onto two detectors through two different sized apertures. The light energy going to the two detectors is separated by a beam splitter. This second path of the light energy through the lens further defocuses the spot, but as a result of the different sizes of the apertures in each light detector path, the amount of defocus for each is different. The ratio of the outputs of the two detectors which are indicative of the contour of the surface is obtained by a divider

    A transmitting and reflecting diffuser for ultraviolet light

    Get PDF
    Fabrication of ultraviolet radiation diffusing layer in configuration that uses ultraviolet properties of fused silica condensate is discussed. Construction and operation of the device are described. Diagram of reflecting diffuser to show construction and method of operation is included

    Reflectance characteristics of the Viking lander camera reference test charts

    Get PDF
    Reference test charts provide radiometric, colorimetric, and spatial resolution references for the Viking lander cameras on Mars. Reflectance measurements of these references are described, including the absolute bidirectional reflectance of the radiometric references and the relative spectral reflectance of both radiometric and colorimetric references. Results show that the bidirection reflectance of the radiometric references is Lambertian to within + or - 7% for incidence angles between 20 deg and 60 deg, and that their spectral reflectance is constant with wavelength to within + or - 5% over the spectral range of the cameras. Estimated accuracy of the measurements is + or - 0.05 in relative spectral reflectance

    Optical analysis of a compound quasi-microscope for planetary landers

    Get PDF
    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components

    An investigation of the facsimile camera response to object motion

    Get PDF
    A general analytical model of the facsimile camera response to object motion is derived as an initial step toward characterizing the resulting image degradation. This model expresses the spatial convolution of a time-varying object radiance distribution and camera point-spread function for each picture element in the image. Time variations and these two functions during each convolution account for blurring of small image detail, and variations between, as well as during, successive convolutions account for geometric image distortions. If the object moves beyond the angular extent of several picture elements while it is being imaged, then geometric distortion tends to dominate blurring as the primary cause of image degradation. The extent of distortion depends not only on object size and velocity but also on the direction of object motion, and is therefore difficult to classify in a general sense

    Performance evaluation of a quasi-microscope for planetary landers

    Get PDF
    Spatial resolutions achieved with cameras on lunar and planetary landers have been limited to about 1 mm, whereas microscopes of the type proposed for such landers could have obtained resolutions of about 1 um but were never accepted because of their complexity and weight. The quasi-microscope evaluated in this paper could provide intermediate resolutions of about 10 um with relatively simple optics that would augment a camera, such as the Viking lander camera, without imposing special design requirements on the camera of limiting its field of view of the terrain. Images of natural particulate samples taken in black and white and in color show that grain size, shape, and texture are made visible for unconsolidated materials in a 50- to 500-um size range. Such information may provide broad outlines of planetary surface mineralogy and allow inferences to be made of grain origin and evolution. The mineralogical descriptions of single grains would be aided by the reflectance spectra that could, for example, be estimated from the six-channel multispectral data of the Viking lander camera

    Spectrometer integrated with a facsimile camera

    Get PDF
    This invention integrates a spectrometer capability with the basic imagery function of facsimile cameras without significantly increasing mechanical or optical complexity, or interfering with the imaging function. The invention consists of a group of photodetectors arranged in a linear array in the focal plane of the facsimile camera with a separate narrow band interference filter centered over each photodetector. The interference filter photodetector array is on a line in the focal plane of the facsimile camera along the direction of image motion due to the rotation of the facsimile camera's vertical mirror. As the image of the picture element of interest travels down the interference filter photodetector array, the photodetector outputs are synchronously selected and sampled to provide spectral information on the single picture element

    Prediction of Viking lander camera image quality

    Get PDF
    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances
    corecore